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I.  INTRODUCTION /I//Y\ \(

The decomposition of the Laplacian operator,
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where the coefficient 'of the second term is proportional to the
square of the angular momentum operator, is the basic relation
between energy and angular momentum in the quantum mechanics of
‘the one body problem (or the relative motion of two particles).
When acting on a wave function which is an eigenfunction of total

a.ngula.r momentum 4, the Laplacian simplifies to

oLl (rz_a_>_£<&_gﬁ %J@MM

r or ar. r

in which form it is clear that the effect of this decomposition is
to reduce the Schrddinger equation from a three dimensional partial ’1(
differential equation to a one dimensional (ordinary) differential
equation. As such this relation is of fundamental mathematical
importance and is familiar to everyone who utilizes quantum

mechanics at all.

The analogous procedure when more than one particle is
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involved, in particularlgwo identical particles in an external

force field, although known, is not as well known, nor is it as

well developedtf When the external field is that of a fixed nucleus,
the wave function is expanded in eigenfunctions of the total angular
momentum of the two particles multiplied by functions of the three
remaining independent variables. The total angular momentum eigen-
functions are functions of the three Euler angles only. These angles
are not unique, but in some way they must describe the orientation
of the instantaneous plane formed by the two particles and the center
of coordinates (nucleus) in space. The remaining three coordinates
then describe the positions of the particles in this plane, and the
functions of these variables are the generalized radial functions.
Hyllergas‘ original pa.persl in effect contained the reduced or
radial equations for total S states in terms of the residual coor-
dinates ri, rp,ri1p. In this case, the total orbital angular
momentum is a constant function, and hence the reduction of a six-~
dimensional to a three-dimensional partial differential equation is
independent of how one defines the Buler angles.

The standard treatment of the general problem is due to Breit,a’5
He used the Euler angles that Hylleraasl originally introduced:
namely the two sphe;;cal angles of one of the particles in the space
fixed coordinate system and a second azimthal angle between the

r; - z plane and the rp-r; plane. Breit's remaining coordinates

were chosen as r;, rz, and ©,p, the latter being the angle between
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r and 53 If, however, one wants to describe two electron atoms or
ions in the approximation that the nuclei are fixed, then one has
an additional requirement of which there is no analogue in the one-
body problem. And that is the Pauli principa.l:‘ the requirement
that the spatial function be either symmetric or antisymmetric under
the exchange of the particle coordinates. It is clear that the
Hylleraas-Breit choice of Euler angles (which we hereinafter refer
to as the Hylleraas-Breit angles), being quite unsymmetrical with
respect to the two particles, is not optimum in this respecth. In
fact the construction of linear combinations of angular momentum
functions with the appropriate exchange properties is a very difficult
task which depends not only on the Euler angles but on 915 as well.
It is n§t surprising, therefore, that Breit's original work2 was
limited to P-states, and work thereafter has always been limited to
specific angular momentum sta.tes5 .

However, a treatment by Ho:l_mberg6 using a symmetrical choice
of Euler angles (which we shall call Hduberg's angles) has in the
interim been carried out. With these angles the description of
exchange as well as parity (which latter property is also simply
describably with the H-B angles) is simple (although these proper-
ties are only alluded to in Holmberg's pape15 ). One of gjc—he pur-
poses of the present paper is to examine these properties and relate

them more clearly to the construction of the total wave function
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and further clarify other aspects of Holuberg's important paper.
Principally, however, we shall{&erive the general radial equations
for arbitrary angular momentum (4 ) for the case of two identical
particles in an external field. Holmberg's treatment applies to
three particles of the same mass.

It is clear that in treating three particles of equal mass
Holmberg had in mind the three nucleon problem whereas we are
interested in two-electron atoms, ions, and diatomic molecules.

The application of this formalism to two electron atoms and ions
is clear, and the decomposition amounts to a rigorous reduction .of
the Schrddinger equation. It should only be remarked here that the
scattering of electrons from one electron atoms and ions is also a
‘special class of these problems. {;é have therefore worked out the
connection between the boundary conditions for electron-atom
scattering and Holmberg's angles (Section VIII). j

Inasmuch as Holmberg's paper refers to the three nucleon
problem, reference should also be made to the papers of Derrick and
Blatt7. These papers deal much more realistically with the three
nucleon problem in that full account is taken of an internucleon
potential which is considerably more complicated than a central
potential. As regards the actual choice of coordinates, Derrick and
Blatt define axes along the moments of inertia of the three-body
system. As such they will depend on the lengths of the interparticle
distances and therefore are quite different from Holuberg's angles

(Section II).



II. HOIMBERG'S ANGLES
Figure 1 contains a perspective drawing of Holmberg's angles
which define the particle plane with respect to the space fixed x,

y, and z axes. The rotated axes x', y', z' are then defined by

5 = F SRR T (1)

(2)

x>
1]
FEST RS0

$ =z x % | | (3)

The Holmberg Euler angles are then

© = angle between 2 and %‘ (%)
¢ = angle between %' and % (5)
¥ = angle between X' and (£2-T1) (6)

The ranges and planes of these a.nglés are:

0 Lo 5™ in z-z' plane
0 s&%27 in x-y plane
0 £ ¥s2 W in x'-y' plane .

As is usual a cap on a vector is used to represent a unit vector
~ ~ ral
in the given direction. In particular i, J, k are the three

unit vectors along the (space fixed) x, y, and z axes respectively,
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and thus are synonymous with X, ?}:, and z. Similarly g_’, 3',

" la) A
and x', y', 2z' are identical,

ok

It is clear from the figure that X, being in the x-y plane

has components:

s,

% = LGsd & ismé | (7)

(T

Since i‘ is perpendicular to the z-z; plane, it is perpendicular
to every line in that plane going through the origin. This in-
cludes specifically the line of intersection of the z-z' plane with
the x-y plane. However the azimuthal angle of that intersecting
dine is tixe azimith of z' itself, and since g_' has azimith ¢ , z'
has azimith -2—3 + & (cf. figure 1). The polar angle of 2' is

clearly ©, therefore we have the important relation:
A - " ~
F = L Se6S5ud -} S-0 Cud + KG:0 8)

The relations between Holmberg's angles and the spherical angles
of the individual particles are obtained by substituting Egs. (T)
and (8) into the lhs of Egs. (1) and (2) and using the ordinary

decomposition of r; and T2 in the rhs:

I 24

" . ” . A
= LSe® Gigp 4 ) SaB Siq 4 K Ces B,

’ r ~
[ I S : K Cos ¥
= L Sad Cosq; + ;};S-.ﬂl Seq, + K Gl

4>

One obtains
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S en Coab = 3«-6: Sa 8, S.;.(tPL -) (9)

S8y SuB Sed = Sil| S Losw, - Cu B So % Sa .

(10)
Si8, S20 Cos® = Su B Casd Cos3, — Gos 8, Sin 23, Cosdf (1)
28545 0) CosW = S, s (9.-F ) — S22 Coo (9~ 2) (12)
2 S".U'jeh.) S8e¥ = (Coslﬁz - Ces2?,) S 8
TSBRAG - R ) e s, S (- @)
' (13)
Co:8,0 = Conth Cos 8, + S0, Si B Cac(q,-9, ) (14)
The latter relation is, of course, the well known expansion for
the angle between two vectors.
It is also of interest to give the vectors '_fj_l and f‘_a in the
particle plane: (primed co-ordinate system):
" e, A
L= Coimlw-56.) - f Cos ly- L00) (15)
I?. - &. Sih(‘y + ':‘en.) - £ COS(V + .'—-19,2) A (16)

zZ = J' SmB® + L Cos 8 (1)

-~
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~ Ay
x - ;; COS& - J'(.( @ S'--q. * E' g‘na S\;A§

The following relations which are also very useful can now simply

be derived by computing (il . %) and (rp * _2_) in the primed system.

Cos 8, =
Cn®, =
S !’. (0$q" =

S 9, Cos K -

S O Su 4

SV" 1’1 SI;* q’. =

~ 540 Cesly — 4 04,)
- Sa@ Caly +46,)

Cosd S (Y- §00) - Ces0 8@ Ca(¥- L6y
Cor P S LY « 10,,) - Cos® Sin P Cos W + Llau)

$ud Sely - £O) - Cor8 Cosd Corli - 16y,)

S P Sua (\{ & Lle,,) - Cos © CQsé Cos (’\Y + !ien.\

III. PROPERTIES UNDER PARITY AND EXCHANGE

The operation of parity corresponds to the simltaneous in-

version of both particles; coordinates: ri— -Ii, Ip-»-rz. It

can be seen from figure 1 that this places r; and r; facing the

opposite direction, but the cross product and hence g_' will not

(18)

(19)

(20a)

(20b)

(21a)
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cha:nge as a result of f;his operation. Thus the z-z' plane will
not change and 5_‘:_' will not change. On the other hand (I»-f,)
goes into the negative of itself, so that Y gets increased by w .
In other words under parity
®-—» 0
2 (23)
v > Y+ W
Exchange corresponds to the transformation r%S ro.- From the
analytical definitions 2' and '):c', Egs. (1) and (2), the new primed axes
will go into the negative of themselves. Also (fz-fl) goes into
negative of itself. Clearly the inversion of the z' axis corres-
ponds to the transformation © -~ 7T - 6. Noting that ¢ 1is the
angle in the x-y plane and measured as positive with respect
to the z axis, which is fixed, we see that F~+ T+& | The
simultaneous inversion of 'J:g' and (rg-x_:l) means that the modulus
of the angle % remains the same. However, since ¥ is an angle
in the x'-y' plane, it is measured as positive wit(h respect to the
z' axis. Since the latter goes into the nega.tive', itself, it

becomes clear that Y -+ 2¥ -y . Thus we have under exchange

8-> T-0

é.,@-\-'ﬂ' (24)

’\1/421\'—1{}
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The significance of these transformations relates to the
transformation properties of the vector spherical harmonics under
the same operation. These functions, which are the eigenfunctions
of the angular momentum (next section) , are the basic functions in
terms of which the complete wave function is expanded. They can

be written

m, K .
’ — L(M§¢k‘f) -,k
J, .89 = Jzt;;ﬂ_) 3 " dy () (25)

where the normalization has been so chosen that the function is

mk
identical with what is given in section IV and the d‘g) agree with
those given by Wignere. Only the dependence on © is non-trivial;

form 5 k 7 O

m,Kk ALtk -m m-k
d,(8) = @em)! @-B)'  Ces1p . Sw L8
-y (€4 %) *
(e (26)
v F(m-2 ,-x-2, m-ks), — "a-:';(-))
F(a,b; c; z) is the hypergeometric function in the notation of
™,
Magnus and Oberhettingerg. The important property of dl 8) , proved
in Wigner's book8, is:
™,k L= p -k
d.l(‘r‘e) = (-9 'OLQ, ce) (?7)

Letting P and E, 2 represent parity and exchanges we have

from (23) and (24):

m, k m,k
Phye.¢.¥) = (e . &, yen)

6”_ %1'( 0, Q": !{') = Z

™, K

c(“‘elé*"; 2“-_1#‘)
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which using (27) reduce to

™, K

K 'W\'K
Phie.d.w) = &) J (o, ¢, 1) (28)

",k c mrk
€, 31(9,1’,1;) = (-1) Je (0 ,3,¥) (29)

The simplicity of Eg. (29) is the essential feature which
recommends Holwberg's angles to the description of the two electron

problem.

IV. ANGULAR MOMENTUM
The components of the total angular momentum are readily
expressed in terms of the particles' spherical angles.  Thus, for

example

LM o= sew ) Cot B Con®, 2 S P 2
A q"{v,* o ‘oo % 3,

(30)
+ Cot 19,_ Ce!(P_‘_ ,?—-q,

The particles' angles ¥, @1, Vaz, Pz via (9) - (14)
are implicit functions of the four angles , & , ¥ , ©1o.
Thus the problem of finding Mx in these angles is a straightforward

problem of partial differentiation. We can write

aQ

-im, = A Ay Ao, .2 .
L .}eﬂ\q%'*w?&*“ 03, :

where

A’ = S 3 4 Sw@ T 4 Ct G Cayp 32X 4 Cor 8, Cnd )
31" 3#" ?¢. 3¢L (31)
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and X can be anyone of the angles ®, & , ¥ , or 6;2. Using
then Egs. (9) - (14), one finds that the following relations fall
out quite easily:

P‘en =0

Ag = - Cos P

i~ ©

Thus

M, = # | Cs® 2 - SmdCos® 2 S @
x Vb(. Q‘e % ‘BQ* Sw. 8

A\

v )

One can, of course, proceed in a completely analogous way to
get the remaining components of the angular momentum, however, let

us note from Egs. (20) that

b___"lz’a_ZJ.—-O
s °p

and from (10) and (11)

0 - 3%
L .zé

(32)

(33)

(34)

(35)

(36!

(37)

(38)
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Since
2
9 . A4y 2 Y5 )
3 2—‘_,( 23 *% ¥ 23 a"v’)
substitution of (37) and (38) yields

However, since

M, = {1(3—+2)

7 9

o

we therefore have the z-component of M:

M, = &3
The remaining component of the angular momentum may be derived
from the commutation relation [M* , M '_l = M

Straightforward substitution ylelds:

M - t[s»- 3 +Cos§ COtOD_ - Co&@ -3
20 23 IRY" (ko)

These relations are independent of @, corresponding to the
statement that the angular momentum only depends on the (three)
Euler angles O, é s ][ « The forms of the three operators is the
same as one gets with the Hyllerass-Breit a.nglesj . The square of

the angular momentum is likewise the same. One finds directly
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from the sum of the squares that

M’,-tf{ (|+Cnt9)2£ + 2 o+ L >
- X 3 0% Sen O Yy

- 20t® b_l. +Cot® O ]
Sm 6 DY 26

The vector spherical harmonics, which have been given for
! the restricted range m > k , O in Eq. (25), are the similtaneous

eigenfunctions of’_bf with eigenvalue +H L(L+)and H ™

1 mk . m, k
M 2,6.8,%) = §ULDF(e, &,

™,k o ™k
M3, 0.8 ¥2= thm e, 3, ¥

They are given in a completely general, normalized form in Pauling

and Wilsonloz

-k lk -l [kaml  ((m@+ w¢)
(0, 8.1) = Nems

g‘*@ Cos 16 . €
1 1

"

where
Pa= |k+m + [k -m| + 2

and the normalization constant is

Npm = [(zun(e e gikemh+ FIxom)ICe - ket v Ll

Bl Ik ey - glk-mD! (L4 Hikamt - Ljeom))! (-wi

(41)

(b2)

(43)

F-tvip-1, Lo B, taliomi, swe ) (B4)

(45)

L

[B
)| (46)
)]
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In addition to the usual magnetic quantum number m, the
vector spherical harmonics depend on the quantum number k, an in-
teger whose range of values is the same as m: - 1{ L mKk <t .
The physical significance of k derives from the fact that the :j;m“
are the eigenfunctions of the spherical top (for which (42) is the
Schr8dinger equation), and k is the angular momentum quantum number
sbout the body-fixed axis of rotation. With regard to the
applications that we contemplate here, k can be considered a degen-

eracy label which must be adjusted such that other requirements are

fulfilled.

V. CONSTRUCTION OF THE TOTAL WAVE FUNCTION
We shall confine ourselves here strictly to the atomic problem which
implies that the potential energy as well as the kinetic energy
commutes with the total angular momentum. In this case the total
wave function for a given L must be a linear superposition of the
degenerate ;szk. In addition, m will be fixed for a given mag-
netic substate and the "radial” equations will be independent of m
(cf. Appendix II).
Considering, for the moment, the residual coordinates as r;,

r>, 915, we can therefore expand the total wave function in the

form:
[ ]

"t o BM’(‘(Q $ . v)
%mkﬁ-t.-)ﬂz_,tgt”“"z"’u) AR AR (u7)
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The parity operations, Eq. (23), only effects the Euler angles,

14
and from Eq. (28) it only multiplies the 21 function by (-1)k.
Therefore by restricting the sum to even and odd values of k, we

guarantee that the superpositions have even and odd parity respec-

tively:
even " (g Zu,K
lemcﬁ'&) = g,e ’l('rl’ﬁ’em) ’(e'é’Y)
odd " K ., K
g/( (!Z'Yx) = Z az(t;’rﬂ;eu.)zl(e;é'?/).
™ - K odd

where the double prime on the summation emphasizes that the sum
goes over every other value of k.

In deriving the radial equations (next section) we shall ex-
ploit the invariance of the radial equations with respect to m,
by choosing m = O. When the Hamiltonlian is written in terms of

the Buler angles and the remaining variables, there will occur terms

involving _;% and ?@ . By virtue of m = O, the former terms
vanish, but the latter terms would bring down the imsginary co-
efficient ik. In order to avold complex equations, it is therefore

convenient to construct real angular momentum functions. Let

®e o,X o,-) — o, X
2 v dy ) = {0 cecxy (o)

2T

2, = _'_. 2 _20' ) ﬁ‘*' .8 ﬂkd (e)

ﬁL 27

(48a)

(48v)

(49a)

(4gv)



- 17 -

for X 7 0, vhere

X = [ki
(50)
and for ¥ = O define
o-
AP AN A el
This then constitutes & set of real, orthonormal vector spherical
harmonics (note d‘l 0y = dﬂ 0, -k). These real vector spherical har-
monics are still eigenfunctions of parity with eigenvalue (-l),( .
The property of exchange is a mite more complicated than parity
in the sense that it affects not only the Euler angles, but the
residual coordinates as well. The beauty and importance of Holm-
ber's angles, however, is that there is no mixing, and independént of
whether we consider the residual varisbles r;, rp, ©;p or r;, rs, ris,
the effect of exchange on the residual coordinates is simply r; —ro.
Finally then, if we sons:.:'uct >+
\i/,o('i ) = :)- [fi(f, T 849) 'Ze(g)é'y)
X
(51)

x- x-
¢ B0 10 6 o2 )]

.

the operation of exchange on this sum then gives, with the use of (29),
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E\‘!‘Ylo(.t"t') = q/ln(t'g)'rl)

/.

[ x4+

B
= S_ [:rl(’.‘: ;’:g ,B.,,) C“') '21 (G,Q:W)
x

x (s x
+ }I (1.:7- ' ’:L pen) ("‘) JZ((G‘ é' W)]

Thus if
x+ r+
;c(fty'r\) eﬂ-) = x - };(ﬂ'f"e't)

;’ : a1 -
I(r'i”r"eu) = 2 (-1 '{l(ri'rllen),

the function \f&gf Eq. (51) is a real, space symmetric (upper sign)
or space antisymmetric (lower sign), eigenfunction of M? and M, cor-
responding to the gquantum numbers [ and m with m = O. The space
symmetric and antisymmetric solutions correspond to singlet and trip-
let spin states respectively. Furthermore the restriction tom =0
is sufficient for deriving the radial equations.

We have shown that the m = O function can be written in
manifestly real form, Eq. (51). However in that form, it is not
obvious what the generalization is to arbitrary m states. The
generalization is nevertheless simply obtained. ILet

K 2+ . -
3&"" (51 "L:F.(x)

L
Ji X 70

(52a)

(52b)

(53)
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and
) £

+ {z? )

then the form (51) reduces to that of Eq. (47) for m = 0. For
: o,K
arbitrary m one then need only replace the ,9 P functions by

M’ X K
the appropriate 3 L functions, the radial jl f‘unctj..ons re-

maining the same. Xt

Alternatively one can define generalizations of the 3 .

Eq. (49), for arbitrary m. - X

-, ™, ¥
‘3‘4; hE ()t + “31 ) X770 ,mfo

1
B
I ™, X TP ¢ (5ka)
:3} ” = jé_i ( ;ZC - :Z )
(’ 2
with 2; * i____. ‘eX:t for m =0. For ¥ =0
Q‘('M’o)-f ™,0 (m,0) -
g, =, 4 = (5kb)

The complete function for arbitrary m can then be written
y x4 ™ X+ - o™, x-
Yeult, 1) = 2 [ﬁ Je  + {, J e ] (55)
x .
Xt
In this case the "radial"” functions £, are the same as in (51),
hence real; whereas the angular functions become altered. Note for
(‘"‘if’ + *

m # O, however, that the modified spherical harmonics, ,% p
are no longer real.

Vi. THE KINETIC ENERGY

Just as in the case of the angular momentum, the kinetic energy

can be obtalned by a straightforward process of partial differentiation.
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In this case, however, since second partial derivatives are involved,
the differentiation is a mch longer job, and, as we shall see, the
partial derivatives involving ©;5 no longer cancel out.

We start then with the kinetic energy in spherical coordinates

V|2+ v—: = \ ‘i"f. + L é_ 1 [ JSml?) + 1 _)_:_ ‘}
T T, 87, S ¥ 5 ) 1932
| B, 3 T 1 s6)
+ L 2 WW, 2 o+ L 2
n s..v LLA W, gy,

The first two terms are, of course, unaffected by the transformation.

The angular differentiations then involve the transformation from the

verisbles €1, 91, 82, P t06, ¢ , y , and 0.

Consider the coefficient of the r; 2 term. After some regrouping,

we can write

4
L 'a ﬁw',‘g_ + . 2_1 = z [(3_’54)1 + -—'-_l (Dz_:‘ )‘} 2—1
Su. 8, 2D, 8.2y 29* “m o P 3=y o9 o
n E[bz_x_x.;—'—-b?_)fl+cbfl’.1§‘]‘2
2 L 3 o2y e g1 (57)
y 15% [37(.« 3x,+_u_ VX IXa} N
dop=1 Y Ly gﬂ'l’. ’)q;: ‘)% 'DX"DXB

vwhere for a = 1, 2, 3, U4, 7(‘( refers to 9, ¢ , Y , ©;5. The

problem thus reduces to finding each of the square brackets separately

in terms of the Buler angles and ©;5. The results are given in Table I.:
The kinetic energy thus becomes

AN A K o A
7, o, L1 A (58)
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where
2 1
F' = L [ Sem v+ 9_‘,) 2 . + Cos (y+ _n) Cet © 3
Sim B Rl 20
13 Y
+ (.o‘t\fi- 9-:)! ):' + S"(i"‘fO't) Cot O 2_
sse2¢’ sino 22 (59)
-~ Sa{2y 4 6.) AR )::- > gh.(‘j_\y+g“.) Cot @ i
SinB 20 3¢ Wae
2 L a
-'z(q(q/+_,_z) Cot—al -2 o+ MY o4 2
W 2y 28, v wy
and
2 LY
A = L + Cot 8 Cos (v + 9a)
' 'Y Y 2
S« 8,,
(60)
k3
R' - - C.os_z S”(l, 4 9,.,_) - Col' [2) Sw (‘l W o+ Dll)
S‘:.ell SN‘ e|1_
+ Cc&_@u (\-— AN (61)
2 S Gy, Cos eh.}
e 2
The expressions for Fp, Ap and B can be obtained by replacing €12
by - 61o in the sbove formulae (including the appropriate partial .
derivatives):
F (9, f s ¥ 012) =F1 (8, ¢ , v - 012) (p2)

It is clear, since all the coefficients are independent of ¢

that M, commtes with the kinetic energy. We have also lexplicit],y
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verified that [Mx, V.24V 22] - 0.

Note that the partial derivative involving ©;, and no other
angles has been placed in the curly brackets with the radial derivatives.
This 1s because this term, as the radial derivatives themselves, do
not affect the orbital angular momentum, and are the only terms which
act on total S statesl’e’j.

In fact, in the action of the remaining terms on the angular
momentum eigenfunction rests the bulk of the reduction of the
Schrddinger equation to its 3-dimensional "radial" form. With this
reduction in mind (cf. next section), it is convenient to write Fy

in terms of operators whose effect on the angular momentum eigen-

functions is particularly simple. One can show

1 1
F1 =2 sin 2912{_ fo M2 + cos 012 (sin 2¢ N -cos 2y M)

+ 8in 015 (sin 2y N; + cos 2y Nj) }

32 ) __2“__ 2
3912}y (’-I- 2 8in 0o ) %"2 (63)
,Cos B 1 ?
+ ( 12 = cot 6,5 - )
) TS..G. 2 sin 6,5 'MP
- 2
where :
/\\ = 2 9? + 3: + L M
202 Py h*
'\12 26t 3 - 2 + 1 Cot B8 "
Smo °F Sue 024 oy 96

- (H— 2 Co!:G\ %

(64)
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and 312 is the total angular momentum squared operator given in

Bq. (41). F, is again derivable from F, by replacing 0, by - ©:5.

VII. THE REDUCED OR RADIAL EQUATIONS, ATOMIC CASE
The essential properties of the combinations of the operators

appearing in F; and Fp, Eq. (62), are the following (cf. Appendix I):
x+ IX'2)+ ¥} x4+
<s'u’n‘,c“n*,\') 2‘ = -ax(r-0) Rll(|° OI)J + sl,;u-lA)') 2&

04350 MAL L T

[+ Sox (1) - i,ﬂ (632)
x4+ -2)-
\Sc.'w A+ Qsz¢A,)3¢ = -2x(x-1) Bl,,C" l,t)\\‘ o,()'z/
x-~ (r+2) -
- S‘._. (I— )2 + 1+ 380)! A; A;“ AN }[
[+g = ')] 2611*1 (65b)
x- x-1)-
(Siay A, = Cos 2y A, \’3( = =a7(2-0 By, G- 85, ) (1~ on) 33
¢ X~ YA | le+2)-
Y - 2A, )3( - So,lj_ Ax Arer 1 Z¢ (668) *
[' —n] 2 B xeq
. x- X-2)
(Sﬁqqxl\. + Cog 2y I\Q)ﬂz = 2%(x=1) By (i- 01)2( +
X+ r1)+
- Sq,x (\ - ZA; )Zt - (-—-—-&—-—-——' - Sc'x) . Ai i z/
(+ 5, (12-1) , Bg P

(66b)



where

A - G- (xet+1)

o - 2( )p¢t) (67)

and

J:((- x+1) (. (—7+1)(1+1)((+1—U] E
4 x(X=1)

(¥ (68)

Recall that y is the absolute value of k, Eq. (50). We have explicitly

verified that these relationships are not altered if one replaces the

(m.x)¢
3,_ functions by the 28 functions of Eq. ( 5h).(cf.App¢;nd.1x
II
This is, of course, necessary for the radial equations to be indepen-
dent of m. With these relationships, it becomes quite simple to de-
rive the reduced equations from the original Schrédinger equation
HY.,, = E ¥, ' (69)

where the wave function V4 ‘o is expanded in Eq. (51). One obtains
X+ N N
" hs C fl' r.‘ 4
t k 3

1see,, ¢ S~ 8, .

«O-2m)} 5,

X+

(ne2)4 A ﬂ( r-2)4
+ Co__r_B,. (14")(102)3114.2 f‘f + C_O_k_e‘-._ 4+ 381’(1 x-2 _}_( .J

Sa 0, wsad, U+ 5., lF-n) Pex
+(L - L [X C?_é_(jn - Cot 9, _ - x D_}_’_:—
(7‘.‘ "f) ( 2 Sun B2 1s o, >:F 20,,
6,0 L1-1 Z:)_{ + O0(x+2) Py, {V”'F
JMG;; S“"a'z
(x-2)-
- ! I~ So.x- A -

lcSv‘aO.; I+8°”_1 (ﬁ—\) B}x



x- X+
+ Cot B 8, (V- IA; ) } 51 + Gt ®a (1= %, ,,,) (‘xu)(xn)ﬁ)(}qup

25»“8'1 49,
4 ¢ (X—I.) -
+ (._o_t__eqt (l - S°,l-2) AI" A’,' :"Q -
4 s.:.e,,[
(+d_(r3-1) ] B
? ",)‘*xr )] d
| x- X+
(L, - "L)["é} + *¥te®, _ G, - L )5(
r’ r;v De'l QSWB_J; ’ls‘;‘ell
b8
¢ x+ Or+2)+
v S Q- 2R) & (- Syxen) o0 Grn) Ben §
2 Awm b2 Sw9,,
: ¢ € (x-2)+
,'_‘f__:s__s_ﬂ'_kz : A;-1 ‘ A?—-l R .gﬂ -0
4 Se O z ' t -
e Sexalfi-0) By, (70b)
Lg is the S wave part of the kinetic energy, and only the term con-
12
taining it survives in the description of S sta.tes:l’ 2,3 .
EN 2 .
boa = L3 422h (L)L N (5we, 2 ) (T2)
LORY) T, R sap,, 39, 36,y .
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Eq. (70) are the "radial" equations, which it has been our pur-
pose to derive. They pertain to both types of parity and exchange

states. Parity is determined by the eveness or oddness of X .

If, for example, £ is even, and we want to describe a state of
»”+ x=
even parity, Egqs. (70) couple the functions §, and ey for
)= 0,2,4 --- 4 . This involves 5/,_ pairs plus one function
o- o~
(for X =0, 2 ¢ is zero hence :f-l can be taken to be

zero) or ¢ + 1 functions. The odd parity equations for the same E
correspond to the coupling of the function with x =1, 3, ...,

£ - 1. This relates L/> paire or £ functions to each
other. Both even and odd parity together therefore involve (2 ¢ + 1)
functions corresponding the (2 £ + 1) degeneracy of the vector spherical
harmonics for a given m. For ({ odd, there are £ functions in-
volved in the even parity equations and A + 1 functions in the
odd parity equations.

For a given parity and 4 , both singlet and triplet (space

symmetric and antisymmetric) states are described by the same set of

equations. The differences in the solutions devolve from the dif-
ferent boundary conditions which must be applied, Eqgs. (52). One of
the key virtues of the functions ‘{_:h(trl, rs, ©1o) is that they
are either symmetric or antisymmetrie; thus they may be confined

to the region, say ry ) Ta- If, for example, € 15 even so that

X+
the exchange character of -} 2 is symmetric (which, according to
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x-
(52), implies that }, is antisymmetric), then these properties

may be embodied in the boundary conditionsll:

x4+
[?_ §( (’:urzyau)} = 0O ’
L

’n"‘;

»

where . represents the normal derivative, and
) £
}((rlﬂrl,eu)] = 0 ,
LA Y

and the solution from there on involves only the region r; ; ro 770.

Such equations have distinct advantages from the point of view of

numerical solutionsla.

One can define, however, an asymmetric function in terms of

which the radial equations can be more simply written. Letting

x X+ x-
F‘ (rl; 1; 4 6,1) ":‘_ ‘S}quf rg,e|1) + ';q(ﬂ,ra;ecl)
and

fx x+ x-
£ (f, ,7'1, en) = ;‘ (11» 1‘1,9.1' - ‘g;(fgﬂ‘i;e.z)

8o that, from Eq. (47),

~y £ x
Ftﬁ,r'.en) = i(—|) F;('T..T,,Bu)

(72)

(73)

(74)

(1) .

.o

(76)



- 28 -

oné obtains by adding (70a) and (70b):

Lo, + 22 (€ -W)] ;- (L, + )[(t(!m-r‘ e\
L =P T y? Tt 15;‘&;; * q4 \) f

( ~ 42 Xt2 _, w2
- S"’ (ot e (- ZA" ) "; + (’“”("’ 1) Coton Bexe {F( - gz,’u:(E'j'LF )é
25:’..9”_ ' St (')n
¢ g x-1
: ~ AL W x-2
+ oot B Ay A [R o+ $oees (2674 R )
Usw B, - ) .
,SPI L S;,ﬁ,lgfz—l)—} (n
ﬁx — x
*(-’— -4 ) x 3F¢ _ x [CxB. ~Core, - 3 Fkx‘ Sy (._QA:);;
o A, 25 B 2500 e

-

~ N+2 X427 M r2 ¢ { { > x-2 X2 >R
4 (x41)(x42) Py {—Fl + Sixea (R« F; ) L+ Ay sBArs F( +So,x—1. (ZF( ‘*5_ )IL

Siq, 2 Bey "'S~‘~5-JE+8°‘1_1(E—')]J

These equations, depending as they do on F¢ and E, are more ana-
logous to the form the P-wave equation of Breit. 2 The question may
arise in connection with these as well as Breit's equations, of whether
they are well-defined, since they involve two functions F: and f;' *
and yet there is only one equation (for a given x ). This question,
in fact would appear to be particularly relevant as the previous form
of our equations,(70) do constitute a coupled set for a given x .
To see that both situations are meaningful and in particular that (77) °
is well-defined, consider a numerical solution of (77). In that case
the space of the independent variables is divided into a grid of

x
points, and Fy is the collection of numbers assoclated with these



-29-

grid points. F: can therefore be considered a vector with as
many components as there are grid points. The differential equation
is replaced by a matrix which operates on the vector F,i . Now
everytime an ﬁlx occurs in the equation, it is completely clear
what has to be done: namely one must let the matrix counterp.art of its
coefficient in the differential equation operate on that component of

Fx which is its reflection point defined by (76). This is a com-

{
pletely unambiguous prescription which is tantamount to saying that
the set (77) is well defined by itself. The reason that (70) is
composed of two equations for each X whereas (77) is not is due to
the fact that the functions F‘,{ are asymmetric and therefore must
be solved for in the whole 71, Tz, 91> space. On the other hand
.the f{t functions are either symmetric or anitsymmetric, and there-
fore they are restricted to the r; ; rp, 0,2 (or equivalently to the
r1 g Tz, ©:-) space. Since this is only half the independent
variable space, it is necessary that there be double the number of
functions to recover the same information. This is again to say
that (70) and (77) are completely equivalent. (Nevertheless a redun-
dant equation with F;‘ and ﬁ: interchanged may readily be derived.)
We have stated that (70) has certain advantages from the point
of view of numerical integration. However, it should also be stated

that the form (T7) will probably be more advantageous for ordinary

variational calculations. This is because if one adopts a specific
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analytic form of F}l , one need only interchange r; and r, in
the expression to obtain Ef
The differences in the f{t description from that of E:
gives rise to characteristic differences in the formulation of
boundary conditions for scattering problems (cf. the next section).
The restriction of these equations to the atomic case (two
identical particles in a fixed central field) has implicitly been made

by assuming that the potential is a function of the residusl coordinates,

vV = V(I‘l, rp, I‘12), (78)

8o that V commtes with the angular momentum and therefore appears
as an additional diagonal term in the radial equations.

The inter-particle distance r;» is related to the independent

radial coordinates that we have thus far considered, r,, rp, 9;- via

the law of cosines:
r122 =r,2 + r22 - 2rirs Ccos O35,

Alternatively, however, one can consider r;, rp, and r;, as the

independent coordinates and derive radial equations involving them.

LY

Those coordinates, in fact, have certain advantages since the three
singularities in the potential occur at their null point. As
such they can describe the wave function in the region of close

interaction very well. These variables, therefore, are particularly
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suited to calculation of low-lying bound states of two-electron

atoms (where on the whole the electrons are quite close to each other
and to the nucleus) and such successful calculations have been done
ever since the early work of Hylleraas.l

When one considers the equation in the form we have previously

given them, involving ©;5, one is naturally led to expand the "radial"
wave function in terms of Legendre polynomials of cos 91211’. The
expansion i1s then truncated after some Pn(cos ©:-) and convergence is
sought as a function of n. In these classes of two electron problems,
this constitutes the idea of configuration interaction in its most
general form. Recently thils idea has come under some criticism
principally because such a relative partial wave expansion necessarily
converges slowly where the electron-electron interaction is large

(rio small). The argument is doubtless justified for the above-
mentioned low-lying bound states. However the argument can easily
get distorted and exasggerated, for instance when applied to the
low-energy scattering of electrons from hydrogen.14 The point there

is that the long-range correlation coming from the induced potential

in the atom is at least as important as the short range correlation816

and yet is only poorly approximated by the conventional Hylleraas
type of expansion. This situation has been discussed elsehwerele.
These reservations notwithstanding, however, it is nevertheless

true that the most accurate three body calculations have been made

using the r;, rp, r;; coordinates, or linear combinations of theml7,

13,14,15

L XY



on-the low-lying states of heliuml8 and its isoelectronic 103317.
We therefore give below the radial equations in terms of r;, rp, ris.
The equations are in their asymmetric form corresponding to Eq. (77),
since it 1s assumed that they will be utilized in connection with

variational calculations with analytic expansions of the radial wave

functions.

{L"’u M sz(E—V)} FI, B (L ¥ 11:1) [((fj!'i—!l:ll)lﬁﬁt * ft} Fi'

L A £
= S (1-2h) (Kan’o 2 e B
+ (x+)(x+2) B ’7‘.2 7'12- y? X+2 x+ ~ x4z
(x +1) (x+2) Brpea (W74 .1).2_?_:_1{;-( _gml(r(f.g )
2

¢ ¢ Y i - o Sk 8 -
+ Brxoa Ry (174 87— 4a) 1Y iF;’ z*g (2Etx + };x I)}

0,7~2
2Bex [1vg,, (B-0] - F*

(L - L) ["'L A" - ﬂ{ RS N rt‘w‘;‘-t,‘w.rt}ff

";‘ ‘T’ 17, W ﬁﬁ:“(‘f,"’l)"] r ’;
C L X+21  ~x42
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I X
- S\,x (\-QA)() ﬂ’ F
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| I 04—
i
Q
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Here

2 P 1 1 N
§ = + [fn -(w-wl) varg (e w3

The quantity whose square root ( is can easily be shown to be
positive definite. In the equation (68) the g&x is understood

to be a function of r,;, rp, ris:

.4 x
F«l = FI(TI,Y,.,'Y;l)

In addition l’ﬂl is the kinetic energy counterpart of the
S-wave L_e in terms of r;, rp, rio!
"
| . .
Lr = L 3% 413 4 2y,
" 7, 1fi1 % ¥, Ty 3‘)7:
+‘ 'fll"‘ 1;\ - ‘f;. . i 4+ 7‘:‘. + 'f,:_ -__1;1 . X
At TR T, TN

The equations (79) can readily be put in the form of coupled
equations for a given x . In that form they would be elosest to
the form origlnally given by Holmberg6, (although as we have stated
his equations apply to three equal mass particles). One salient dif-
ference between the two sets of equations, however, is that the
present ones are manifestly real, whereas one term in Holmberg's
equations is 1maginary6. It is clear that the equations as well
as the solutions must be reducible to completely real form for any

given angular momentum state. The accomplishment of this in the

(80)

(81)

-
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present case comes from the explicit construction of real vector

spherical harmonics, Eq. (49).

VIII BOUNDARY CONDITIONS FOR SCATTERING

In this section we derive the asymptotic forms of the
radial functions corresponding to the scattering of an electron
from 8 one electron atom in its ground state. The Coulomb modifica-
tions when the target system is an ion instead of an atom can
readily be made and will have no effect on the angular integrations
with which we are here concerned.

As we have seen in the foregoing sections culminating in the
last section, the selection of a symmetric choice of Euler angles
(Hdrberg's angles) has allowed for a completely general derivation
of the radial equations. From the point of view of a scattering
problem, however, a symmetric choice of angles is not the most ad-
vantageous since here we are concerned with an intrinsically asym-
metric situation. Thus if we consider that region of configuration
space where r; is large and rp small, corresponding to electron 1
being scattered from the atom to which electron 2 is bound, the

wave function in this region alone will not be symmetric. However

in terms of the Hylleraas-Breit angles, the spherical angles of one

of the particles being defined as two of the Euler angles, the wave

function in this asymmetric region is easier to describe. Neverthe-
less this is & complication of detail only,since all the angular

integrations may readily be performed as we shall now show.
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We start with the statement that the complete wave function

st have the asymptotic form:

el 8+ DI B e
o0 ! A

where (Rig(rz)/rz) Xo (8,) is the ground state of the one-electron

atom (hydrogen). On the other hand, from Eq. (51),

X+
L‘M \YIO(E ;r:) = SW(K): *Sl - II‘,‘) _L_ ) Z [J (elz)zf(elfw‘” (85)
i 7 "
+ J,Ee,l) Zj(e.é ,'I')J
where
2f oW
;.4

a[lxt( Bul) = yoo‘[ j Bd(e'éﬂ‘l’) \/Zo(vt)s‘.” 6 de d§ o'.l}/ (8k)

2

v

It should be noted that (82) refers to the state of parity (-1)c
as long as we are considering elastic scattering from the ground (1ls)
state. This then defines the evenness or oddness of the values over
which W goes in the summation in Eq. (83).

The quadrature in (84) can readily be performed by recalling

from Section II that 7 is the angle between z and

oo

whose spherical angles in the primed coordinate systems are given
in Eq. (20). One can then use these spherical angles to expsnd

Pc(cos 3t) via the addition theorems for spherical harmonics.
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In its real form9 this gives in the present case

. e L] ™m
By = Ry Py + 1%:0 %.—5_»'.! (o (Ta) (o) Cos (miv- 10,,))

In (85) we have written both the Legendre and associated
Legendre polynomials as functions of the angle but what we mean in
all cases is that the angle is to be substituted into the trans-
cendental form of the function. For example P; ( p ) = cosp and
not Pr (p ) =p . The sign of the B," 1is that of Magnus and

0berhettinger9 (which differs by (-1)™ from that of Morse and

Feshbachj ). To complete the quadrature in (84) we note that
o,x ' X
P [
dyt® = ) VE;&L‘:Y Pz(e)
L +x)

Substitution into (84) now yields the desired result:

x+ » li
"(l(en) =P (n) [((!(-;),;. } {S,,, + (1- 805 ) Cos 'ie"ﬁ

x- x W-x" 5
L (eu.): P (E [ -
q e(T) ooy

{("' So,x) Se- L;_ela. k

The radial function themselves thus approach

b &
Lim a"'c( Ta",8,) = Selk? & 8e =~ €Ws)  Ry(ty) JXfe
Lnal z v

(85)

(86)

(87a)

(87v)

(88)
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in which form we see that r,, ro dependence of all the J&rt
functions is independent of X , 60 that none of them vanishes in
the asymptotic region. Since in all cases the 9,, dependence is
trivial, it may be worthwhile to define new functions whose asymptotic
behaviour is strictly the r,;, r, dependence in (88).

For bound state problems, it is clear that all the radial func-

‘tions must vanish in all asymptotic regions.

IX OTHER APPLICATIONS
In addition to two electron atomic or ioﬁic systems the present
equations apply to double mu or pi mesic atoms, although as the mess
of the identical particles gets heavier, the correction for the center
of mass becomes more important. Also for the spinless bosons (pi
mesons) only the space symmetric solutions will presumably be relevant.
The equations can also be applied to two different particles
of the same mass (positron-hydrogen scattering, for example). In
this case, the potential, V, will no longer be symmetric hence the
solutions will not be symmetric which implies that boundary condi-
tions like (72) must be changed to matching conditions of the asym-
metric solutions along the line r; = r219. This has the effect of
glving one solution where formerly there were two, in accord with the
distinguishability of the particles.

The major extension of this approach is to two-electron diatomic
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molecules. In this case, the extension from oneao to two elec-
trons is non-trivial. However, the analysis has been completed

and will be published elsewheregl
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Appendix I

In this appendix, we prove the Egs. (65) and (66). For m =0,

9 terms give zero. Therefore, we can write

S
A - 3 _Cotd ) - Cot (11)
502 L1 Pyt
/\z - 2Cot O Qj -2 - 1Cott,)_ (I2)
Spap oY (a4
end
21* *oF
¢ = N, Coxy sask, (I3)
x- x
3! = Nex Sery S8 Fy (Ik)
where
New = [2Zm  Uex)t L1 (15)
BY*  (e-x)! 2 «
and ‘ :
Fx - F'(x—,{ , el et Qen, 'S:Q) (16)
2
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Now x*
x~-* 2
N = New Cosxy [ 2x(x=1) Sime Cob Fx - x simo R

X ¢ a ¢ '
+ 1x wB8Cosg Ax Fy,, vsao A f-;fzJ (I7)

L S & 3]

where we have used the well known relations for the derivatives of

hypergeometric functions:

d F, = AY 508 Fry
) g (18)
+ A ¢ ¢ x )
dFr = A cedF + A Su6 F,
;—elt x X+ 2 AXH wS Txea (19)
A relation between Fr , FXH and Fx +2 can be obtained from
the differential equation satisfied by the hypergeometric function
C 4 2
o> B F-IQ'I = F)( - A;‘q,: Sw § F,+z
2 (x+1) (IlO)

Using (I10) in (I7), we find

n-2

I\.z‘ = fo CO;X?/[II(X—D Ss @ Cen® F,(

x P ¢ .
3 - X SuB Fx +2x S.8 A’ Fx (Ill)

_141 [ !
+ (1= _’L(‘:') Sind Ay Ay, t;u‘}
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Similarly,

X+ x~1 a x
N3, = -Ngysexy | 22(x-0 Sime Covo Fx - x3ie Fx

X+ X412
X+

¢ X 2
+2x A, swe by — 2 sim Ko As, ] (112)

Multiply (I12) by Sw2y and (I1l) by cos 2y and subtract to get

x* ¢ .7 (x+*
(Sw 2 My - Cos 2y A')bf = 'Nl)c Cor(3-2)4 G = Ney A, Axﬁ 31 (113)
INC)H).
where
x-2 X 'x ¢
G = (1.71(1_0 Sia® Cos® - X S6 + 2x U0 Ax )F;

(T1k)

iy
Ax+2

¢ A¢
v 1=x sine Py Apy By
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Let x —»x+ in (I10), then
G}SB FI+2 = F-1+l — Sq:e AZQL F
3 P L)
Substituting in the above for F,,, end F,,, by using (110)

we get after some rearrangement

2 .* 4
[Cgse(xq-l) + )(fa,__S.':e A:‘” 4 S""‘e__AX+1.J E(,z
X+t (% +n 2 (x+1)

< £ ¢
- Swm@ hgtz -A;us FX-04 - x+2 F’
4

(x#)(x+3) *!

n

Letting x »X-2  mltiplying by 2( x —1 )2 sin®@ and rearranging we

have for b /%)

-2

G = 2x(x-1)Sw0 Fy, X 40,1
Also we find directly from (I1l) and (I12)
2 ¢ !
G = tsief AF, X< o
g
G = -0-24)sue F - Z =

Finally then with the substitution of the sbove in (I13) we.obtain

for X=2

(115)

(116)

(127)
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. . x+ Ot ~2)- L. 0 (xrea)+
(SIM 2?’ '\L ’C’$1‘P'\|) 3( = - zx(x—')BlJ( 21 - t A)l Ax,.,| 21 (118)
le-n.
where B,(,_/ has already been defined in Eq. (68).
The special cases x=0,1 can be determined from (I13),

(126), (I17). With proper normalization

o4 1+
lSu«AM}’,\;—C"”?’*AI)Zg = =2 A_(Lﬂﬁ 2(

(I19)
sz

and

. 1+ ¢ |+ £ a-
(SM’IWAQ. — C.szq/ A')Zl = (‘—2A' )‘2! - A| A,_ ,Zl
28, (120)

We can combine (I18,I19,I1p0) to get Eq. (658).

Similarly, we can prove (65a), (66a), (66b).
A N
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Appendix II

For m £ O, we get, using Egs. (4k4) and (64)

”, K iAmG +ky) Ix-mi I em|
A‘ 32, = Nlmn e S-‘n%‘ . Co;% { X(m"(z —Su_;f) - 4 mKkCon©®
2, 2
+Kz(l+ Ces ® —~ S'ﬂ_a))_l_ - jkeml l‘ni-Q - [k=wm] Cott_e_
27 sx 2 2 2 2

a
- ‘u--m\llkq—m\& F(-¢ +.$_1-|, [4.’_1 , V+ |k-m\)S.;.,§1__)

o £ a
#2 (ol Cos g - Ierml Sim ) R, o240 £48 41, 20l -mi, 520)

" L iy 4 2
+s£eAm’k,jC~’K, .F(-—l+ﬂ;+\, e“'ﬁ;*'l, 3+|"'“',3‘~Qi)}
and (II1)
m,K : - m

' : Um P +ky) Ik-ml x4 ml 2

, . os © o - 2
/\; 2( = 4 Nl'mk € Sw % . C s,.i { 2mCo GS.: (1 +Ceec 0)

w0
4 kCosBH-m (Ik-wd Cot ® _ |K4mli +¢m9) < (I12)
S © 2 2

F(—~L+f§'-l, L+B , [+ |x-wl ,Sé:_e_)
P} 2 2

+ 2(KCs® —m) AL, A GLRd C+Bori, 2 4 lkomi, s,;..‘e_):)
! 2
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where
Moo = CULB-DCE~En) | (113)
214+ Ik-m1)
¢
Cw\,k = ("t +P/,)(l + ﬂ/«’- +() (II4)

202 + [k=m1)

For illustration purposes, let = Kk-217m . Multiply (II2) by

sin 2y and (II1l) by cos 2y and subtract to get

v,k img K AL RE S
(Swmay Ay = Caaaw V) 3¢ = ~Ngmy ¢ ,s_:?:s Coth Lc .S_-_!i_e -

¢ ' 2
: - - +
F\.,h'“ C“’k FGtvxs2, Lrked | 34 k-m ,Sh\Q_i)

(k-)W X
e (1(\((0&3-”)( CosBD(K-1) = W) — K*Sim © +
Sin © (115)

e "
2(KkCos -1+ X - m) A,.,'g> F(-2+k , Lakal, (4 K- ,s.-ne_L)
Coso(""k)-m R

4 2
+ (|-K)C°se+m . S‘-:e A{“l" Cn'g F(—QQKAVQ ,l+K#$,3+ wawm )S@Qi)}]
2[(ka)Casp =] :

3

where we have used the reJ.ation

>
FL—(+k+|, C+ke2, 1+ X-m, s..'.g_) - |+ k-m F(-R+K, L4 x+1, |4k-wm, s...qi)
2 Caa® 14K}



L
- =2 Cok Flotorer, teres, snk-m sile)  (114)

Using thisresult, (which reduces to (I15) for m = 0) in (II5), we

obtain for k £ 0,1

[““"""“) (Car®Lr=) =™) 4 2p (k+1-w)(2KCer® —2m) Af.,.‘
Cosg (M4 X) = ™

—KS&:G]F(-2+K,I+K+\ , i+ K=m, s&’g Y
2

(I17)
of

- CosO(K-1)- -m S'.,..“e A F( Ltk+2, l+k+3 L4 K-m S-A?%)
C°$O(I<-H) -m

= 3(k-m)(|<—|—w\)F(~F+K—2 y L +&-1, K—M—‘, Sl«ze ) \

2

so that
* m, K- ™, K$2
kSu‘d\P I\’_—C.sq\,‘, A.)B? = ~2(k-m)(k-m- ')'31;( 211 N A...,CP j( (::[18)
26!&11
vwhere
"o - 5
Bex = Neme o R8s -n(takea) (k)] (119)

Y b (kem) (k-m—1)
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It is easily verified that

o
(k-m)('(--m—!) P’“., = k(x-1) B(k
¢ ¢ [} F §
Ame Cor = B Pun
™
Bl +2 ED

Using (II20) and (II11) in (II8),we find

m,K ",k"’. t l S‘M,kfz
(S.;,qq« A, - C,,')(y“)3‘ = - 2ax(x-OB¢, 2¢ - Au At d e
2Bfk¢1
Similarly, we find
™, -K m,-(x-2) 7 ? m, ~(ke2)
(Su'- 1Y f\, - leq/ﬂ') zl = -2RL|:—|)P31K>1 - Ac: _Aku 2(
2 Bl ke

Adding (II12) and (II13) and using the definition (54a) we derive

finally for X £0, 1
\

(1110)

(IrIiy)

(Ir2)

(I113)

oe



™Kt ~x-2)4 ™, (Xe2)+
(SV'.'“*’ A: - C"s')tPAl )3’ = '27((1“982’ 31 - Ai Agﬂ Dj

which is identicalin form to (I18) for m = O. Other relations can
be proved in the same way, thus the radial equations are in fact

independent of m.

L XY
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Table 1 ¢ Coefficients of the Angular Derivatives in the Kinetic

Energy . Cf. Eq. (49)

Coefficient Derivative Coefficient Derivative
e
sin®(y + .%2_) EZ‘Z cot Oin o
9 )
sin® 0,5 9912
cos®(y + 952) 2 -sin(2y + 6;5) 2
. Y 61n0,, sin © J0dY
sin® 0,5 sin 20
Ay 3;2 cot © sin (2y+0,5) 32
3 sin® €, 303y
1 §2 0 . 32
3912 693912
cot 9:cosa(Y+%a) 2 -2 cos © cosz(‘i'+912'2) o
sin 2 0.5 ® . 8in%0.5 sin 28 %Y
cos @ sin (2¥+6;2) a o 32
sin“ © sin * 9,5 o8 353012
B o -1 2
oY Y01

& A; and B; are given in Egs. (60) and (61).
: .



Figure 1.

Figure Caption

Perspective drawing of (Holmberg's) Buler angles

and the unit vectors of the problem.
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